Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains.
نویسندگان
چکیده
Phase diagrams of ternary lipid mixtures containing cholesterol have provided valuable insight into cell membrane behaviors, especially by describing regions of coexisting liquid-disordered (Ld) and liquid-ordered (Lo) phases. Fluorescence microscopy imaging of giant unilamellar vesicles has greatly assisted the determination of phase behavior in these systems. However, the requirement for optically resolved Ld + Lo domains can lead to the incorrect inference that in lipid-only mixtures, Ld + Lo domain coexistence generally shows macroscopic domains. Here we show this inference is incorrect for the low melting temperature phosphatidylcholines abundant in mammalian plasma membranes. By use of high compositional resolution Förster resonance energy transfer measurements, together with electron spin resonance data and spectral simulation, we find that ternary mixtures of DSPC and cholesterol together with either POPC or SOPC, do indeed have regions of Ld + Lo coexistence. However, phase domains are much smaller than the optical resolution limit, likely on the order of the Förster distance for energy transfer (R(0), ∼2-8 nm).
منابع مشابه
Transition from nanodomains to microdomains induced by exposure of lipid monolayers to air.
The morphology of monolayers prepared from ternary lipid mixtures that have coexisting fluid phases has been examined by atomic force microscopy for samples transferred to mica before and after exposure to air. Mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine and cholesterol with either egg sphingomyelin or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine were studied at several surface pressure...
متن کاملFörster Resonance Energy Transfer (FRET) between Heterogeneously Distributed Probes: Application to Lipid Nanodomains and Pores
The formation of membrane heterogeneities, e.g., lipid domains and pores, leads to a redistribution of donor (D) and acceptor (A) molecules according to their affinity to the structures formed and the remaining bilayer. If such changes sufficiently influence the Förster resonance energy transfer (FRET) efficiency, these changes can be further analyzed in terms of nanodomain/pore size. This pape...
متن کاملFluorescence energy transfer reveals microdomain formation at physiological temperatures in lipid mixtures modeling the outer leaflet of the plasma membrane.
An approach is described using fluorescence resonance energy transfer (FRET) to detect inhomogeneity in lipid organization, on distance scales of the order of tens of nanometers or greater, in lipid bilayers. This approach compares the efficiency of energy transfer between two matched fluorescent lipid donors, differing in their affinities for ordered versus disordered regions of the bilayer, a...
متن کاملMolecular dynamics simulations and Kelvin probe force microscopy to study of cholesterol-induced electrostatic nanodomains in complex lipid mixtures.
The molecular arrangement of lipids and proteins within biomembranes and monolayers gives rise to complex film morphologies as well as regions of distinct electrical surface potential, topographical and electrostatic nanoscale domains. To probe these nanodomains in soft matter is a challenging task both experimentally and theoretically. This work addresses the effects of cholesterol, lipid comp...
متن کاملInvestigation of Domain Formation in Sphingomyelin/Cholesterol/POPC Mixtures by Fluorescence Resonance Energy Transfer and Monte Carlo Simulations
We have recently proposed a phase diagram for mixtures of porcine brain sphingomyelin (BSM), cholesterol (Chol), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) on the basis of kinetics of carboxyfluorescein efflux induced by the amphipathic peptide delta-lysin. Although that study indicated the existence of domains, phase separations in the micrometer scale have not been observed by fluore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 99 10 شماره
صفحات -
تاریخ انتشار 2010